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Abstract

This paper presents a kinetic-model based algorithm for estimating some unstabilized compo-
pents in vehicular motion. In addition to smooth movement, there are unstabilized components
such as bounce, pitch and roll in vehicular motion. To reliably accomplish other tasks like track-
ing and obstacle avoidance using visual inputs, it is essential to consider these disturbances. A
two-wheel vehicle model available in the literature is used for this purpose. It takes into account
the bouncing and pitching components. The dynamics of these unstabilized components are for-
mulated using standard equations of motion. Assuming that depth information is known for some
landmarks in the scene (e.g., obtained from a laser range finder) and additional information from
inertial sensors such as accelerometers is available, a feature-based approach is proposed to esti-
mate the unstabilized components. Simulation results for both deterministic and stochastic terrain
profiles are presented. The robustness of the filter with respect to various parameter mismatches

is also addressed.

The support of the Advanced Research Projects Agency (ARPA Order No. A422) and the Army Research Office
under Grant DAAH-0493G0419 is gratefully acknowledged, as is the help of Sandy German in preparing this paper.




1 Introduction

There has been growing interest among computer vision researchers in solving the problem of au-
tonomous vehicle navigation. For many navigation-related tasks such as feature tracking, moving
object detection, obstacle avoidance, etc., knowledge of the vehicle’s pose and motion is a prereg-
uisite for success. Although the Inertial Navigation System (INS) on board the vehicle can provide
accurate attitude and motion information over short periods, there exist some problems over long
periods due to sensor drifts. An independent estimate of the vehicle’s motion can be combined

with the INS data to provide more reliable information.

In recent years, the wealth of information contained in long sequences of images has attracted
the attention of computer vision researchers. Due to lack of knowledge of the forces and torques
that result in movements of the camera, most kinematic-model-based motion estimation algorithms
_assume a smooth trajectory over time in order to exploit temporal information [1, 11-14]. However,
for a vehicle moving in an outdoor environment, the onboard camera undergoes non-smooth motion.
The performance of algorithms which do not take into account unstabilized components in the
motion may degrade, as noted in [4].

In order to describe jerky movements of a vehicle, a two-wheel vehicle model which can be found
in the literature on optimal design of suspension systems is utilized [2]. This model accounts for
two unstabilized components of the motion: bounce and pitch. In addition to compensation for
the smooth motion assumption, the explicit separation of unstabilized and stabilized components

provides useful information for stabilizing all the sensors on the vehicle.

In this paper, to estimate these components, the equations of motion are first derived from
the Lagrangian point of view. Subsequently, assuming that a camera is rigidly attached to the
vehicle with known orientation and the 3-D coordinates of some landmarks are available (these

can be obtained, for example, by a vehicle-mounted laser range finder), the relationships between

the vehicular motion and image plane displacements of these landmarks are found. A recursive
algorithm is then formulated, and an Iterated Extended Kalman Filter (IEKF) [7}is used to estimate

both unstabilized components of the vehicular motion. In addition to the visual information,

inertial sensors such as accelerometers are also incorporated in our work. Since the model requires

various internal parameters such as the moment of inertia and the position of the center of gravity,

the Tobustness of the filter with Tespect to parameter mismatches is also studied analytically and onfiig 3
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The organization of this paper is as follows. Section 2 gives detailed descriptions of the two-wheel
vehicle model and the physical laws describing the dynamics of both unstabilized components. The
recursive formulation of the algorithm is given in Section 3. Section 4 presents simulation results.

A sensitivity analysis is given in Section 5, and conclusions are presented in Section 6.

2 Vehicle Model

In order to account for unstabilized components such as bounce and pitch in vehicular motion,
the two-wheel vehicle model [2] shown in Figure 1 is used. Both front and rear tires are modeled
by linear springs with the same stiffness coefficient Kr. M, and M, represent the masses of
unsprung elements such as the front and rear wheels and their axles. K¢, Cy, K, and C, are the
characteristics of the linear springs and shock absorbers that model the suspension system. Wy
and Wg constitute the wheel base and consequently specify the position of the center of gravity of

the sprung element (or vehicle body).

center of gravity Oy,

Figure 1: The two-wheel vehicle model [2]

Assuming that each tire contacts the terrain at a point at all times, four degrees of freedom exist
in the model: the displacements of the unsprung elements {z;,z,}, the bouncing displacement of
the sprung element z., and the pitch angle §. All of them are measured from the corresponding
static equilibrium points.

In the following, a coordinate transformation between two moving reference systems is described

first. The equations of motion are subsequently derived.




2.1 Coordinate Transformation

To describe the orientation of the vehicle at any time, the coordinate systems shown in Figure 2 are
defined. An inertial coordinate system I is chosen to be fixed on the ground. Another coordinate
system V moves with the vehicle with its origin locating at the vehicle’s center of gravity and its
axes coinciding with the principal axes of the vehicle body. For the two-wheel vehicle model, since
only the longitudinal axis changes with time, the orientation of the vehicle is known if the pitch
angle is available. In other words, if we define the coordinate system I' as the reference system
which translates with the vehicle but has the same orientation as reference I, then for any point

P, its coordinates in V (denoted by Py) are related to its coordinates Py in I’ as follows:
Py = RPp (1)

where R is the rotation matrix and is related to the pitch angle by

cos® 0 —sind
R=] 0 1 0 (2)

sinf 0 cosf

Figure 2: The coordinate systems: The inertial coordinate system Ixyz, the moving coordinate
system I%y 5 and the vehicle coordinate system Vgy..




2.2 Suspension Dynamics

To describe the oscillation behavior of the vehicle model, either the Newtonian laws [9] or Lagrange’s
equations of motion [3] can be applied. Because of the simplicity of the two-wheel model, it is easy
to employ the Newtonian laws. However, for a more complicated model such as a four-wheel vehicle
model [5, 10}, the Lagrange point of view is more feasible. The equations of motion are therefore

derived in terms of Lagrangian mechanics in this paper.

Since there exist four degrees of freedom in the model, define the generalized coordinates as
g= (x17x27$070) (3)

The Lagrange equations of motion can then be written as follows [3]:

d (0T or 90U 0D

— =] -==+=+==0Q; j=1,....,4 4

di (%‘) og; = 0g; = 0g ®
where {g;,7 = 1,...,4} constitute the generalized coordinates, T is the kinetic energy of the system,

U is the potential energy, D is the dissipation function, and the Q;’s represent the generalized forces
acting on the system during vibration. We describe each energy term in the following.

A. Kinetic Energy

It is well known that the kinetic energy of a moving rigid body is equal to the summation of
translational kinetic energy and rotational kinetic energy. In other words, if a rigid body moves

with translational velocity V' and angular velocity w, its kinetic energy is [9]
1 2, 1 2 2 2
§M|K| + 'Q‘(Ixrwz + Iyywy + Izzwz) (‘5)

where M is the mass of the rigid body, {I,;, Iy, I..} are the moments of inertia with respect to
the principal axes, and (w;,wy,w,) are the projections of the angular velocity along the principal
axes.

As seen from Figure 2, since the two-wheel vehicle model only accounts for the bouncing and
pitching motion, its rotation axis coincides with the pitch axis at all times. The angular velocity is

therefore decomposed into

wy = 0
vy = (6)
w, = 0




Then, taking into account the vertical displacements of the unsprung elements and the oscillation

of the sprung element, the kinetic energy can be obtained as
T=Tg+Ty (7)
where Tg is the kinetic energy contributed from the sprung element

1. ., 1_
T = 5Mm;z + EIyyoz. (8)

Here Mg denotes the mass of the sprung element and T, is the kinetic energy contributed from

unsprung elements

, \
T, = %wafc% + §Mw,o'c§ (9)

B. Potential Energy
The potential energy takes into account the influence of the springs and tires on the vehicle during
vibration. Consequently, to obtain the potential energy, the deformations of both elements need to

be known. For the tires, the deformations are directly observed from Figure 1 and are obtained as

d = T1—Toi (10)

d3 = z2-—Zo02

On the other hand, noting that the two corners to which springs and shock absorbers are
attached remain fixed in the coordinate system V, the deformations of the springs are obtained, by

considering the displacement of center of gravity and (1), as

dy = z.+Wysind — 24 (11)

dy = z.—Wpgsinf — z,

Then, assuming linear relationships hold between the deformations and the forces exerted by

the springs, the potential energy can be written as
U=Us+Ur (12)

where Ug contains the potential energy stored in the suspension systems

1
2

1

Us = 5

K¢ + K. d? (13)

and Ur represents the potential energy stored in the tires

1 1
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C. Dissipation Function
The dissipation function accounts for the effect of the shock absorbers. Assuming that the forces
produced by dampers vary linearly with the rates of change of the deformations, the dissipation
function D is obtained as
D= %cfd'g + %c,dz (15)
In addition to the various forms of energy described above, the generalized force @); in (4), which
takes into account other factors such as the road reactions on the tires due to tire load variations,
is required to describe the jerky movements of the vehicle. The effects of generalized forces will be

considered in subsequent sections. Then, by applying (4), the equations of motion can be obtained.

3 Recursive Formulation

It is observed that the resulting equations of motion are nonlinear. For a vehicle traveling through
uneven terrain, it is reasonable to expect that the pitch angle is small. Therefore, in deriving the

equations of motion, if we further assume that the small pitch angle approximation holds, i.e.
sinf =~ 6 (16)

then the equations of motion can be described by the following second order, linear differential

equation:

G+ Kqg+Lg=Mzy+ NQ (17)

where the elements of the matrices K, L, M and N are related to system parameters such as spring
constants, moments of inertia, etc. z, are the excitation inputs and @ are the generalized forces

defined as

= (Zo1,Zo2) (18)

= (Q1,0Q2,Q3,Q4) (19)

o &

If the terrain profile and the generalized forces are known, the bouncing and pitching movements
can be obtained through the integration of (17). However, since the system parameters are usually
known approximately, the results obtained from direct integration are not reliable. It is therefore
feasible to employ some estimation technique and combine the information provided by other sensors

such as cameras and accelerometers.




Unlike batch estimators, which process all the data, recursive filters update the estimates of
parameters as new information becomes available. Among recursive estimators, EKF and IEKF
are both suitable for estimating parameters of a nonlinear system. We describe the plant and

measurement equations for the recursive algorithm in the following.

3.1 The Plant Equation

In addition to the imperfect knowledge of system parameters, it is usually difficult to measure the
terrain profile and the generalized forces accurately. To account for these difficulties, accelerometers
are assumed to be at our disposal to provide the accelerations of unsprung elements. By integration

of measured accelerations, the velocities and displacements of unsprung elements are approximately
derived.

Therefore, the bouncing displacement and the pitch angle are the remaining unknown quantities.

Let the state vector z be defined as follows:
z = (2, %, 6, é, v)T (20)

Then under the assumption that the vehicle moves along a straight path with constant forward

speed v, the equations of motion can be rewritten in the following form:
i=Az+ Bz, +w (21)

where z,, are regarded as control inputs consisting of displacements and velocities of unsprung

elements, i.e.

Ty = (21,%1,22,32)7 (22)

A, B are the plant and input matrices derivable from K and L and have the following form:

0 1 0 0 0 )
—(Ks+Ky) —(C4+Cr) —(K;Wa-K:Wg) =(C;Wa=C:Wp) ¢
MB MB MB MB
A= 0 0 0 1 0 (23)
—(K Wa-K:Wg) =—(CiWa-C:Wg) —(K;Wi+KWE) —(C,WI+CWE)
I.‘!y Iyy I!Iy Iyy
\ 0 0 0 0 0




and

[ o 0 0 o
Mg Mz Mz Mz
B = 0 0 0 0 (24)
KWy CiWa K, Wy =C.Wpg
Iyy Iyy Iyy Iyy
0 0 0 0

w is the plant noise, with zero mean and covariance matrix @),,. The added plant noise takes into
consideration the modeling error and the imprecise knowledge of vehicle parameters as well as the

movements of unsprung elements.

3.2 The Measurement Equations

A sequence of images taken by a camera rigidly mounted on the moving vehicle provides visual
information for estimating jerky movements. In order to exploit this information, the relationships
between the state vector defined above and the image plane coordinates of a set of landmarks need
to be derived.

For clarity, in addition to the coordinate systems defined in Section 2.1, define another reference
system as a camera coordinate system which has a fixed orientation with respect to the moving

reference V' and its origin, O¢, located at the projection center of the camera. In other words,
Ocv(t) = (do,0,1) ¥t (25)

where both dp and [ are constants. Moreover, for a vehicle undergoing bouncing and pitching
motion as well as constant longitudinal motion, its center of gravity, Oy, follows the following

trajectory expressed in the inertial coordinate system I:
Ovi(t) = (zc(t) + h,0,0t) Vit (26)

where h is the height of center of gravity when the vehicle is at rest.

Then, for a landmark P, the relationships between its inertial coordinates, P; = (X, Yo, ZO)T,

and the camera centered coordinates, Pc(t), can be found as follows:

_Xo l‘c(t) + h do
Pc(t) = R(6) Yo | - 0 - 0 (27)
Zo vt {




where R(#) is the rotation matrix defined in (2). Without loss of generality, it has been assumed
that the camera coordinate system has the same pose as the vehicle reference system V.

After the camera centéred coordinates have been obtained, the image plane coordinates of
landmarks are obtained by applying the perspective projection formula. The resulting measurement

equations for the j*® landmark are

N gCos 0(t:)[ Xo; — (zc(t:) + B)] — sin 8(t;)[ Zo; — vti] — do
X3l = G 8(t0) Xy = (zelt) + B)] + cos 0(2:) Zo; — oti] — 1

Yo,
Yilt) = o)X — (ealie) + h())] + cos 0(t:)[ Zo; — vti] - 1

+an(t,') j=1,...,N

+ ny; (ti) (28)

where f is the focal length and N is the number of tracked landmarks. (nx;(t:),ny;(f;)) is the
measurement noise which takes into account the quantization noise and errors in tracking feature

points over the sequence.

4 Simulation Results

Using the nominal values of the vehicle parameters listed in Table 1, the performance of the al-
gorithm in estimating the unstabilized components of the vehicle’s motion was studied through
simulations. Since the movements of unsprung elements due to uneven terrain and generalized
forces are approximately known because of the employment of accelerometers, the effects of gen-
eralized forces need not be considered separately. The generalized forces are therefore assumed
to be zero in the simulations. Then, after the terrain profile is generated, state trajectories ob-

tained through the integration of (17) are regarded as the ground truth for evaluating the filter’s

performance.

Table 1: Model parameters

M,z | 57.5 kg K; | 18.0kN- m™} Wy | 1.353 m
My, | 75.0 kg C; | 1.0kN-m-s7! | Wg | 1.337m
Mp | 1710.0 kg K, | 100kN -m™! h |20m
I, |1031.25kg-m® | C, | L.OKN-m-s7" | do | 0.6m
K7 | 2000kN-m~! || [ |135m

In the following, the simulation results for different terrain profiles are presented.




4.1 Deterministic Excitation

Consider the behavior of the model when the vehicle encounters a bump. The bump is modeled by
a half sine wave with its height and width denoted by b5 and b, respectively. The movement of the
vehicle is such that it first traverses a flat path before encountering the bump, and the front tire
hits the bump at the location 2. After the vehicle passes through the bump, its excitation inputs

are zero. This results in an excitation input of the front tire of the following form:

bpsin[f-(vt— 20)] 2 <t< gﬂj;—bk

zo1(t) = (29)

0 elsewhere

In our work, we assumed b, = 0.1 m, b, = 0.2 m and zy = 1.345 m.
Since the vehicle is assumed to move along a straight path, the rear tire input is related to the
front tire input by
z02(t) = 20 (t - %) (30)
where L is the wheel base. Because the excitation inputs to the tires are zero initially, the vehicle
is assumed to be in a static equilibrium state with a forward speed of 1.345 m - s™*. The resulting

behavior of the model is displayed in Figure 3.

- : Bouncing Velocity

2F - : Bouncing Displacement b 1 .

-.- : Pitch Angle 0.1r ? " - ¢ Pitching Velocity
: v

0.15+ M
!
02 i
23 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time(s) Time(s)
(2) (b)

Figure 3: The movement of the sprung element under the excitation of a bump: (a) The bouncing
displacement and the pitch angle; (b) the bouncing velocity and the pitching velocity.

Subsequently, a set of landmarks is tracked over the sequence. Since the image displacement
fields due to bouncing and pitching movements are very similar, it is important that the landmarks
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being tracked carry enough information for estimation of the unstabilized components. For example,
tracking feature points which are far away from the camera provides more information for estimating
the pitching motion than the bouncing behavior. This can be seen from (28). By dividing the
numerator and denominator by Zg; — !, the image plane coordinates for the j* landmark are the

same but the measurement equation can be rewritten as

X;(t:) cos B(t: ) Xs(to) + 7,1 Zo«—z ;_OJ(t:%] —sin6(t)[1 + ZOJZ“I ~ 7,71k Z:’ + nx, (%)
F\le T (ts v
_ sin 8(2;)[X;(t0) + 72 ZO,_, 70%1,] + cos 0(4:)[1 + zo,l--l v Lo Zoj—l ’
(t
Yi(t) = f i(lo) Tt (k)

sin 0(¢;)[X;(t0) + 772 ZO — %ﬁl] + cos 8(t;)[1 + zojl»-z - Zo;{_lti] ~ 75,7
where (X;(%o), Yj(to)) are the image plane coordinates of the j* feature point at the beginning and

can be found as follows:

Xo;—h—4d
X;(to) = —OJZO—:—Z*E
J
Y.
Yito) = 7
7

If z.(t) € Zo; — I, the image plane displacement due to the bouncing movement is almost zero
and the information is likely to be overridden by errors in feature tracking. Similarly, the spatial
resolution of the images should be high enough that the image plane displacements due to the
bouncing movement can be seen in the sequence.

Accordingly, the image sequence is assumed to be acquired at a rate of 10Hz. Each image is of
size 2.0 x 2.0 and has resolution 2000 x 2000. The first four landmarks listed in Table 2 are tracked
over the sequence in the simulation. Note that in generating these landmarks, it is further assumed
that the landmarks close to the camera are likely to appear in the lower part of the images at the
beginning. For simplicity, the landmarks are carefully chosen so that they remain in the field of

view at all times.

Table 2: The 3-D coordinates of landmarks in the inertial coordinate system I

H Landmarks | 3-D coordinates || Landmarks | 3-D coordinates H
1 —13.75 -=15.75 22.50 5 —29.50 -=31.50 45.00
2 —14.80 -8.40 21.00 6 —-31.60 -—-16.80 42.00
3 -15.25 11.50 23.00 7 -32.50 23.00 46.00
4 —10.90 17.20 21.50 8 —-23.95 34.60 43.25

As mentioned above, the movements of the unsprung elements need to be known in order to
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apply the IEKF. Since they are obtained from the integration of measured accelerations, errors are
expected. Uniformly distributed errors with variances proportional to the true values are therefore
added to model uncertainties. For comparison, the resulting errors in the movements of the sprung

element obtained from direct integration of (21) are shown in Figure 4.

x 10

x 107

0.5p-

- : Bouncing Displacement

- : Pitch Angle b H

- : Bouncing Velocity

-.- . Pitching Velocity

1 2 3 4 s 6 7 8 9
Time(s)

6 7 8 9

10 0 1 2 3 4 5
Time(s)

(a) (b)

Figure 4: The errors in the sprung element’s movement obtained from direct integration (deter-
ministic excitation): (a) The bouncing displacement and the pitch angle; (b) the bouncing velocity

and the pitch velocity.

After the measurements and control inputs are obtained, assuming the vehicle is in the equilib-
rium state and moves forward at a speed of 1.0 m - s~ initially, the bias and Root-Mean-Squared
Errors (RMSE) obtained from twenty Monte Carlo runs are shown in Figures 5 and 6. Since the
estimate of the forward speed is quite accurate, the corresponding result is not shown here.

To compare our results with other kinematic-model-based algorithms, a kinematic model which
assumes that the camera moves with constant translation and rotation is adopted. The plant

equation for the kinematic model is therefore

i=Az+uw (31)
where z is the state vector defined in (20), and A is the sparse square matrix
A= {/112 = Ass = 1; all other elements /L-j =0} (32)

w is the plant noise.
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Bias in the estimates of the sprung element’s movement under deterministic excitation

Figure 5

(b)

i

ic (solid line) and kinematic (dashed line) models: (a) The bouncing displacement
13

the bouncing velocity; (c) the pitch angle; (d) the pitch velocity.
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(c) (d)

Figure 6: RMSE in the estimates of the sprung element’s movement under deterministic excitation
for the kinetic (solid line) and kinematic (dashed line) models: (a) The bouncing displacement; (b)
the bouncing velocity; (c) the pitch angle; (d) the pitch velocity.
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As seen from Figures 5 and 6, for z.(t) and 8(¢), both models provide good yet similar estimates.
This is due to the direct relationships between corresponding states and measurements. As for the
other two states, @.(t) and 6(t), the kinetic model responds to the excitation faster than the
kinematic model because of better modeling. In addition, it is observed that the estimates of 6(t)
and 6(t) are more accurate than the estimates of z.(t) and Z.(¢) since the measurements provide

different information as mentioned above.

Although the kinematic model provides estimates comparable to the kinetic model after the
transient, there are irregularities continuously acting on the tires in the real world. We study the

responses of both models under continuous irregularities in the next section.

4.2 Stochastic Excitation

For simplicity, the irregularity is modeled by a first order Markov process with coefficient depending
on surface roughness and the vehicle’s forward speed. Specifically, the excitation input to the front

tire is modeled as

Z01(t) = —avze1(t) + n(t) (33)

where n(t) is zero mean, white Gaussian noise with variance equal to 20%av. The values of the
coefficients, a and o, vary with the roughness of surface. v is the vehicle’s forward speed. In
particular, o = 0.012m, a = 0.40 m™! and v = 13.45m - s™! were chosen in our work [8]. Figure 7
shows a sample function of the random process. Then, according to (30), the excitation of the rear

tire is also specified. The resulting movement of the sprung element is shown in Figure 8.

Stochastic Excitation of the Front Tyre

0.2

o1r 4

<021 b

0 0.5 1 15 2 25
Time(s)

Figure 7: The stochastic excitation to the front tire.
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05r
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Time(s) ’ Time(s)

(2) (b)

Figure 8: The movement of the sprung element under stochastic excitation: (a) The bouncing
displacement and the pitch angle; (b) the bouncing velocity and the pitch velocity.

Since the speed of the vehicle is higher, a higher image acquisition rate is assumed in this case.
Accordingly, the last four landmarks listed in Table 2 are tracked and an image sequence is acquired
at the rate of 20Hz in which each image has the same size and resolution as before. The choice of
the last four landmarks is such that they remain in the field of view for more than three seconds.
In addition, because the four landmarks are almost out of the field of view in three seconds, only

fifty frames are considered.

As in the previous case, the movements of the unsprung elements are assumed to be noisy.
Moreover, in estimating the motion of the sprung element, unlike the previous case, the vehicle is
not in the equilibrium state when the processing begins. Instead, we assume the initially its center
of gravity is 0.01 m higher than the equilibrium point, the bouncing velocity is equal to 0.1 m -s71,
the pitch angle is 0.01 rad, the pitch velocity is 0.1 rad - s~!, and the forward speed is 10.0 m - s~ 1.
Then, with the initial conditions different from the exact starting states, the effects of imperfect

knowledge are shown in Figure 9; the estimated results of both kinetic and kinematic-model based

algorithms from twenty Monte Carlo runs are displayed in Figures 10 and 11.

As seen from the figures, the IEKF reaches a steady state quite quickly and improves its
performance over direct integration by incorporating visual information. Furthermore, the kinetic

model outperforms the kinematic model because of its better response to continuous irregularities.

Now that the performance of the filter with exact knowledge of a set of internal parameters has
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Figure 9: The errors in the sprung element’s movement estimated from direct integration (stochastic
excitation): (a) Bouncing displacement and pitch angle; (b) bouncing velocity and pitch velocity.

been studied, the robustness issue needs to be addressed. In the next section we investigate the

sensitivity of the filter to mismatches of various parameters.

5 Sensitivity Analysis

The proposed algorithm exploits knowledge not used by other kinematic-model-based algorithms
to yield enhanced performance. However, to estimate the bouncing and pitching movements, a set
of vehicle parameters needs to be known. In addition to the problem of measuring them precisely,
some parameters are likely to vary during the operation of the vehicle, e.g. spring stiffness. It is

therefore necessary to address the robustness of the filter.

In our formulation, since the wheel movements z,,(t) are approximately known, the effect of tire
stiffness mismatch is not considered. The remaining parameters which affect the behavior of the
model, i.e. the A and B matrices defined in (23), (24), are characteristic constants of the springs
and dampers which consist of the suspension system, the vehicle mass Mp and moment of inertia
I, and the position of the center of gravity W4. Note that because the sum of W4 and Wp is

fixed, it is sufficient to study the effect of W4 only. In the following we present both analytic and

numerical analysis results subject to the excitation input shown in Figure 7.
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Figure 10: Bias in the estimates of the sprung element’s movement under stochastic extitation for
the kinetic (solid line) and kinematic (dashed line) models: (a) The bouncing displacement; (b) the
bouncing velocity; (c) the pitch angle; (d) the pitch velocity.
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(solid line) and kinematic (dashed line) models: (a) The bouncing displacement; (b)

the bouncing velocity; (c) the pitch angle; (d) the pitch velocity.
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5.1 Analytic Sensitivity Analysis

The IEKF estimates the unstabilized components by combining the information in the dynamic
model and visual data. As shown in the comparison of the kinetic and kinematic models, since not
all of the states are directly related to the image plane movements of landmarks, it is important
that the dynamic model provide a good description of these states. The sensitivity of the kinetic

model to various parameters is therefore investigated.

For convenience, define the parameter vector A as
A=Ky, K, ,Cy,Cr,Wa, M, I,))* (34)

and denote its nominal values by Ay. Then assuming the plant noise in (21) is zero, the dynamic

model is described by

z(t, Q) A(Q)z(t,A) + B(A)z,,(t) (35)

flAz(t,2), 2, (1)] (36)

The effect of parameter mismatches on z(¢, A) is studied using perturbation theory [6]. We focus
on estimating the first order effect of parameter perturbations, say the sensitivity function. If we
assume that f[A,2(t,}),z,,(t)] is continuously differentiable with respect to £ and A and define the

sensitivity function S(2) as

0z(t, ) :
S(t)y= ——= 37
0=252 (37)
it can be shown [6] that when ||]A — Ap|| is sufficiently small, S(t) satisfies the following differential
equation:
8(t) = F0)S(t) + G20, 2u), S(to) =0 (38)
where
of
F(A = = 39
(—0) 8@_ s=z(t,,) ( )
of
G(Ay,z) = == 40
B0 2] = 53 st 1o

and z(t, Ap) is the solution of (35) with the nominal values of the parameter vector.

Noting that z,(¢) is available, S(¢) can be easily obtained through numerical integration. Fig-
ure 12 shows the resulting S(¢). It has been observed that all the elements of z(¢,);) are much
more sensitive to W4 than the other parameters. In order to see the effects of mismatches in the
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other parameters, the sensitivities of z(t,A) with respect to W are shown in (a) and (b) separately.
Figure 12 (c) to (f) show the sensitivities of each state to the other parameters. Since most of them

are very small, we only show the effects of the three most sensitive parameters.

As seen from Figure 12, in addition to the high sensitivity to Wy, the bouncing movements are
more sensitive to mismatches in Mp; the pitching behavior is more sensitive to mismatches in I,.
Moreover, C, has moderate effects on all the states, and the model seems to be less sensitive to
spring stiffness mismatches. ‘

Under the assumption that mismatches in the parameters are sufficiently small, the sensitivity
function gives us a qualitative idea of how sensitive the model is to parameter mismatches. How-
ever, depending on the nominal values, mismatches can be moderate for some parameters, and the
filter incorporates additional visual information to improve the estimates of both unstabilized com-
ponents. The sensitivity of the filter to parameter mismatches is therefore studied quantitatively

in the next section.

5.2 Monte-Carlo Simulations

Because of the effect of plant and measurement noise as well as imperfect knowledge of the unsprung
elements’ movements, sensitivity to parameter mismatches is studied through Monte Carlo methods.
We focus here on the analysis for the stochastic excitation case. Therefore, using the parameters
listed in Table 1 as nominal values, the ground truth for the states and measurement trajectories
is generated as in Section 4.2. Then, by varying each parameter separately within a reasonable
range, the performance of the filter is investigated.

In the following study, we first classify the parameters into three categories: suspension pa-
rameters, inertial parameters, and basic dimensions. Then, assuming the initial conditions of the
IEKF are the same as those in the study of stochastic excitation, we present the effects of param-
eter mismatches in each category. For simplicity, since the bias in the estimates is small after the
filter reaches the steady state, the average RMSE over the last 25 frames, i.e. t € [0.125,0.25], is
computed for comparison. With the nominal values listed in Table 1, the average RMS error in
the estimate of z(t) is 0.005911, in Z.(t) it is 0.021331, in 6(2) it is 0.000157, in 4(t) it is 0.006673,
and in v it is 0.002994.

(1) Suspension Parameters: The suspension parameters consist of K¢, K,,Cy and C,. For each
component, two values corresponding to £50% mismatches of the nominal value are consid-
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ered. The resulting effects are shown in Table 3. Similar to the results shown in Section 4.2,
z(t) and (t) are insensitive to suspension parameter mismatches. As for Z.(2) and (1),

although the parameter mismatch is up to 50%, the performance of the filter degrades only

a little.
Table 3: The effects of suspension parameters
[ Parameters [ RMSE of z.() | RMSE of #.(t) | RMSE of 6(t) | RMSE of 6(t) | RMSE of v |
K_f 9000.0 (—50%) 0.005747 0.019784 0.000138 0.007020 0.002500
27000.0 (+50%) 0.005762 0.023697 0.000134 0.011747 0.002417
K, 5000.0 (—50%) 0.005845 0.020547 0.000142 0.011751 0.002554
15000.0 (+50%) 0.006084 0.023672 0.000164 0.007695 0.002916
Cf 500.0 (—50%) 0.005833 0.021439 0.000140 0.007078 0.002498
1500.0 (+50%) 0.006040 0.021602 0.000167 0.006849 0.003027
Cr 500.0 (—50%) 0.005453 0.021577 0.000132 0.006453 0.002323
1500.0 (+50%) 0.005800 0.020544 0.000149 0.008852 0.002772

(2) Inertial Parameters: We consider the mismatches of Mp and Iyy. Since these two parameters
are directly related to the sprung element’s movements, the performance of the filter is ex-
pected to be more sensitive to parameter mismatches. By varying each parameter separately
by —50%, —25%, 25% and 50% of the corresponding nominal value, the average RMSEs
resulting from the IEKF are shown in Table 4. As seen in Table 4, when Mp or Iy is only
half of the nominal value, the average error increases rapidly compared to the other cases.
The model also seems to be more sensitive to smaller values.of Mp and I,,. Moreover, the
mismatch of Mg only affects the estimates of z.(t) and (), but not those of §(¢) and 6(t).

The opposite is true for the effect of I,.

Table 4: The effects of inertial parameters

[ Parameters | RMSE of z.(t) | RMSE of @.(t) | RMSE of 6(2) [ RMSE of 6(t) | RMSE of v |

855.0 (-50%) 0.005453 0.031434 0.000140 0.006467 0.002593

Mp | 1282.5 (-25%) 0.005663 0.023491 0.000147 0.006285 0.002681

21375  (4+25%) 0.005749 0.021482 0.000142 0.006402 0.002453

2565.0 (+50%) 0.006085 0.022240 0.000166 0.006645 0.003005

515.6 (-50%) 0.005594 0.021763 0.000137 0.019551 0.002512

Ly | 7734 (-25%) 0.006056 0.022475 0.000169 0.010187 0.003154

i 1289.1  (425%) 0.005902 0.021990 0.000151 0.006448 0.002811
1546.9  (+50%) 0.005907 0.022386 0.000142 0.007306 0.002533

(3) Basic Dimensions: After the sensitivity to mismatches of the suspension and inertial param-

eters has been studied, Wy is the remaining parameter which affects the plant and input
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matrices. The resulting performance of the filter when this parameter is mismatched by
—~50%, —25%, 25%, or 50% of the nominal value is shown in Table 5. As seen in Table 5, the
filter is not very sensitive to mismatches in the parameter within 25%, but if the mismatch

is too large, the error in the estimate of 6 starts to increase.

Table 5: The effects of basic dimensions

[ Parameters | RMSE of z.(t) | RMSE of ¢.(t) [ RMSE of 6(¢) | RMSE of §(t) | RMSE of v |
0.676 (—50%) 0.005627 0.020987 0.000143 0.012693 0.002629
Wa | 1.015  (-25%) 0.005708 0.022588 0.000151 0.007024 0.002813
1.691  (425%) 0.005607 0.022920 0.000131 0.009199 0.002191
'2.030  (+50%) 0.005624 0.025048 0.000149 0.012803 0.002917

Through our quantitative analysis, it is observed that the incorporation of visual information
provides robust estimates of z,(¢) and 6(¢). And if the mismatches in various parameters are
moderate, say less than 25% of the nominal values, the performance of the filter does not degrade

much. Therefore, we claim that the filter is robust with respect to parameter mismatches.

6 Conclusions

A new kinetic-model-based algorithm has been presented for estimating some unstabilized com-
ponents of vehicular motion. With the incorporation of existing kinematic-model-based motion
estimation algorithms, a better description of the vehicular motion can be obtained. Consequently,
many navigation-related tasks can be simplified. Although the 3-D landmarks are assumed to be
known in this paper, structure from motion algorithms could be incorporated so that structure and
motion could be estimated simultaneously. Because of improved modeling and the use of inertial
sensors, better performance is possible.

In addition to its application to image understanding, the consideration of unstabilized com-
ponents of vehicle motion provides information for improving the ride behavior of the vehicle. In
order to compensate for the external disturbances, active suspension systems (which differ from
passive systems in using the actuators to continuously generate forces acting on the wheels and
vehicle body) have been suggested. Estimates of the unstabilized components can provide useful

information in the design of active suspension systems.
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